Homoleptic Lanthanide Triple-Deckers of 5,15-Diazaporphyrin with D2^h Symmetry

Na Pan,† Yongzhong Bian,‡ Takamitsu Fukuda,† Masaki Yokoyama,† Renjie Li,‡ Saburo Neya,*,§ Jianzhuang Jiang,*,‡ and Nagao Kobayashi*,†

*Department of Chemistry, Graduate School of Science, Tohoku Uni*V*ersity, Sendai 980-8578, Japan, Department of Chemistry, Shandong University, Jinan 250100, China, and Department of Physical Chemistry, Graduate School of Pharmaceutical Science, Chiba Uni*V*ersity, Inage-Yayoi, Chiba 263-8522, Japan*

Received September 8, 2004

Two novel homoleptic diazaporphyrinato lanthanide sandwich complexes $M_2(DAP)_3$ [M = Ce (1), Eu (2); DAP= 2,8,12,18-tetraethyl-3,7,13,17-tetramethyl-5,15-diazaporphyrinate] were synthesized by a one-pot reaction of the corresponding $M(acc)_{3} \cdot nH_{2}O$ (acac = acetylacetonate) with metal-free D_{2h} type diazaporphyrin, H₂DAP. The spectroscopic and electrochemical properties are compared with those of complexes based on D_{4h} symmetry porphyrin ligands.

Sandwich-type metal complexes of tetrapyrrolic macrocycles were first reported by Linstead as far back as 1936 with the first synthesis of a tin bis(phthalocyanine), $Sn(PC)_2$.¹ In recent years, lanthanide tetrapyrrole "sandwich-complexes" have been the subject of considerable research interest due to potential applications as advanced materials.^{2,3} Modifications have been made to the porphyrin (Por) and phthalocyanine (Pc) ligands to enhance the properties of sandwich complex materials and facilitate their fabrication process. Although a large number of double decker, and several triple decker complexes, have been reported to date, the complexes have always been based on D_{4h} symmetry Por or Pc monomers. Recent studies of low symmetry Pc complexes have revealed that the heteroaromatic π -system is affected significantly by the reduction in molecular symmetry. Marked changes are observed in the $\pi \rightarrow \pi^*$ absorption bands of the monomer complexes in the $UV - vis$ region.⁴ It therefore seems reasonable to assume

- (1) Barret, P. A.; Dent, C. E.; Listead, R. P. *J. Chem. Soc.* **1936**, 1719.
- (2) Buchler J. W.; Ng, D. K. P. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 3, pp 245-294.
- (3) Jiang, J.; Kasuga, K.; Arnold, D. P. In *Supramolecular Photoactive and Electro-active Materials*; Nalwa, H. S., Ed.; Academic Press: San Diego, CA, 2001; pp 113-210.

that if sandwich-type complexes can be prepared based on a reduced symmetry ligand, then the current understanding of the electronic structure of sandwich complexes could be enhanced considerably. We selected opposite-diazaporphyrins (DAPs) for study since they can be readily synthesized in high yield and are known to have an electronic structure that is markedly different from those of the D_{4h} type porphyrin congeners.5,6 In this Communication, we report the synthesis and characterization of the first triple-decker Por analogues, $M_2(DAP)_3$ [M = Ce (1), Eu (2)] (Scheme 1). The structure of **2** is analyzed by X-ray crystallography. This is only the second X-ray structure to be reported for a triple decker Por analogue. The results obtained can be readily compared to those obtained for the higher symmetry $Ce₂(OEP)₃ complex by Buchler et al. in 1986.⁷$

Metal-free diazaporphyrin, H₂DAP⁶ (60 mg, 0.12 mmol), was reacted with $M(acac)_{3} \cdot nH_{2}O$ (0.4 mmol, $M = Ce$ and Eu for **1** and **2**, respectively) in refluxing 1,2,4-trichlorobenzene for 18 h. After removing the solvent by evaporation,

Scheme 1. Synthesis of Rare Earth Diazaporphyrinato Triple-Deckers

^{*} To whom correspondence should be addressed. E-mail: sneya@ the residue was purified on an alumina column using toluene athenaeum.p.chiba-u.ac.jp (S.N.); jzjiang@sdu.edu.cn (J.J.); nagaok@ mail.tains.tohoku.ac.jp (N.K.).

[†] Tohoku University.

[‡] Shandong University.

[§] Chiba University.

⁽⁴⁾ For example: (a) Fukuda, T.; Makarova, E. A.; Luk'yanets, E. A.; Kobayashi, N. *Chem. Eur. J.* **2004**, *10*, 117. (b) Kobayashi, N.; Fukuda, T. *J. Am. Chem. Soc.* **2002**, *124*, 8021 and references therein.

⁽⁵⁾ Kobayashi, N. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 2, p 301.

⁽⁶⁾ Ogata, H.; Fukuda, T.; Nakai, K.; Fujimura, Y.; Neya, S.; Stuzhin, P. A.; Kobayashi, N. *Eur. J. Inorg. Chem.* **2004**, 1621.

⁽⁷⁾ Buchler, J. W.; Cian A. D.; Fischer, J.; Kihn-Botulinski, M.; Paulus, H.; Weiss, R. *J. Am. Chem. Soc.* **1986**, *108*, 3652.

Figure 1. MCD (top) and electronic absorption spectra (bottom) of $1(-)$ and 2 (\cdots) in CHCl₃.

as the eluent. The first fraction (brown for **1** and green for **2**) contained the triple-decker sandwich target complex, while a second blue-purple fraction contained a small amount of unreacted metal-free DAP which was eluted from the column with chloroform. Compounds **1** and **2** were further purified by recrystallization from a mixture of chloroform and methanol and then characterized by elemental analysis and various spectroscopic methods.^{8,9} No homoleptic doubledecker complex was isolated or detected.

The absorption and magnetic circular dichroism (MCD) spectra of 1 and 2 were recorded in CHCl₃, Figure 1. The spectrum of **1** is dominated by a B-band at 354 nm, which contains a marked shoulder on the lower energy side, and a Q-band at 652 nm. The B-band is significantly blue-shifted when compared with that of $Ce₂(OEP)₃$, while the Q-band in contrast is red-shifted. 5 The corresponding monomer species show similar spectral shifts.⁶ Recent time-dependent DFT calculations of ZnDAP⁶ predict that the introduction of nitrogen atoms at the *meso* positions causes a blue-shift of the B-band and a red-shift of the Q-band with a concomitant decrease and increase, respectively, of the absorption intensity. Although calculations have not been carried out for **1** and **2**, the spectral properties would be expected to broadly reflect those of the DAP monomer. The MCD spectra of **1** and **2** show pseudo-Faraday *A*-terms in the Q and B spectral regions due to the presence of closely lying *B*-terms of opposite sign,¹⁰ despite the fact that the MCD spectrum of H2DAP monomer contains resolved MCD peaks corresponding to absorption peaks and shoulders (Faraday

Table 1. Redox Potential Data (vs Fc⁺/Fc) for the $M_2(DAP)_3$ (M = Ce (**1**), Eu (**2**)) Complexes in *o*-DCB Containing 0.1 M TBAP

			O_3 O_2 O_1 R_1 R_2 R_3 ΔE	
			1 0.89^a 0.30 -0.26 -1.73 -2.17 -2.43^a 1.47 2 0.85 0.33 -0.05 -1.64 -2.05 -2.43 ^a 1.59	

^a Data from differential pulse voltammogram.

B-terms).6 For example, in the MCD spectrum of **1**, one dispersion type curve appears in the B-band region between 340 and 363 nm and is associated with an absorption peak at 354 nm, while another in the Q-band region lies between 558 and 662 nm corresponding to the absorption peak at 572 nm. This suggests that the absorption and MCD spectra of lanthanide triple-deckers do not reflect the D_{2h} symmetry of the DAP ligand, as has been observed previously for cation-induced cofacial crown ether dimers and *µ*-oxo dimers of ligands of C_{2v} symmetry.^{11,12}

The electrochemical properties of compounds **1** and **2** were investigated through cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in *o*-DCB. The potentials obtained for ring-centered oxidation and reduction are summarized in Table 1. Both **1** and **2** exhibit three reversible one-electron oxidation and one-electron reduction processes. The potential differences between the first oxidation and reduction potentials of $Ce_2(OEP)$ ₃ and $Eu_2(OEP)$ ₃ have been reported previously to be 1.86 and 1.81 V,13 respectively, while the corresponding values for **1** and **2** were found to be 1.47 and 1.59 V. The electrochemical data therefore correspond well with the red-shifts observed for the lowest energy $\pi \rightarrow \pi^*$ bands of 1 and 2 relative to those of $Ce_2(OEP)_{3}$ and Eu₂(OEP)₃. The first oxidations for **1** and **2** occur at -0.26 and -0.05 V (vs Fc⁺/Fc), respectively. These potentials are considerably more negative than those exhibited by monomeric DAP complexes, for example at ca. 0.45 V in the case of CuDAP,⁶ reflecting the effect of the strong $\pi-\pi$ interactions between the ligands within sandwich complexes. Interestingly, **1** shows an additional, irreversible oxidation couple at 0.61 V. This process can be attributed to the Ce^{III}/Ce^{IV} redox couple and has been observed previously for other cerium sandwich complexes. $13-15$

Crystals of **2** were obtained for X-ray crystallography by slowly diffusing methanol into a chloroform solution.¹⁶ The structure was found to have a triclinic unit cell containing a sandwich complex solvated by a water molecule, Figure 2, in which both of the europium ions have approximately square-antiprism coordination environments based on the

- (11) Kobayashi, N.; Togashi, M.; Osa, T.; Ishii, K.; Yamauchi, S.; Hino, H. *J. Am. Chem. Soc.* **1996**, *118*, 1073.
- (12) Kobayashi, N.; Yokoyama, M.; Muranaka, A.; Ceulemans, A. *Tetrahedron Lett.* **2004**, *45*, 1755.
- (13) Duchowski, J. K.; Bocian, D. F. *J. Am. Chem. Soc.* **1990**, *112*, 8807.
- (14) Bian, Y.; Jiang, J.; Tao, Y.; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z.; Li, H.-W.; Mak, T. C. W.; Ng, D. K. P. *J. Am. Chem. Soc.* **2003**, *125*, 12257.
- (15) Montalban, A. G.; Michel, S. L. J.; Baum, S. M.; Vesper, B. J.; White, A. J. P.; Williams, D. J.; Barrett, A. G. M.; Hoffman B. M. *J. Chem. Soc., Dalton Trans.* **2001**, 3269.

⁽⁸⁾ Selected data for **1**: 1H NMR (400 MHz, CDCl3) *δ* 2.24 (s, 2H, mesoinner DAP), 1.88 (s, 4H, meso-outer DAP), 1.54 (s, 24H, -CH3-*o*), 0.88 (s, 12H, $-CH_3-i$), 0.65, -0.19 (m, 16H, CH₂-*o*), 0.20 (s, 12H, CH₃-DAP-*i*), -0.35 , -1.23 (br, 8H, CH₂-*i*), -5.83 to -5.98 , -6.70 CH₃-DAP-*i*), −0.35, −1.23 (br, 8H, CH₂-*i*), −5.83 to −5.98, −6.70 to −6.83 (m 24H −CH₃-DAP-*o*): ESI-TOF mass (m/z): 1716 (M⁺ to -6.83 (m, 24H, -CH3-DAP-*o*); ESI-TOF mass (*m*/*z*): 1716 (M⁺ + 1); UV-vis(CHCl₃) [λ_{max}/nm (log ϵ)] 349 (5.07), 445 (4.03), 587 (4.05), 682 (3.63). Anal. Calcd for $C_{90}H_{102}N_{18}Ce_2·2C_7H_8·2H_2O$: C, 64.51; H, 6.35; N, 13.02. Found: C, 64.68; H, 6.34; N, 12.25.

⁽⁹⁾ Selected data for **2**: 1H NMR (300 MHz, CDCl3) *δ* 16.95 (s, 2H, meso-*i*), 14.11 (s, 4H, meso-*o*), 6.89-6.92 (m, 8H, CH2-*i*), 5.59- 5.64 (m, 12H, -CH3-*i*), 4.39 (s, 12H, CH3-DAP-*i*), 3.36∼3.47 (m, 16H, CH2-*o*), 3.13 (s, 24H, CH3-DAP-*o*), 0.98-1.01 (m, 24H, $-CH_3$ -*o*); ESI-TOF mass (m/z) : 1740 $(M^+ + 2)$; UV-vis(CHCl₃) [$λ_{\text{max}}/\text{nm}$ (log ϵ)] 354 (5.25), 534 (4.04), 572 (4.13), 652 (3.84). Anal. Calcd for C90H102N18Eu2: C, 62.13; H, 5.91; N, 14.49. Found: C, 62.77; H, 6.16; N, 13.79.

⁽¹⁰⁾ If the ground state is orbitally degenerate, Faraday *B* and *C* terms would be present rather than Faraday *A* and *C* terms (Stillman, M. J.; Nyokong, T. In *Phthalocyanines. Properties and Applications*; Leznoff, C. C., Lever, A. B. P., Eds.; VCH: New York, 1989; Vol. I, Chapter 3, pp 133-290).

Figure 2. View of the molecular structure of **2**: (a) side view, (b) top view. Displacement ellipsoids are shown in the 30% probability level. Hydrogens in both parts a and b are omitted for clarity.

eight pyrrole nitrogens of neighboring DAP ligands. The Eu-Eu distance is 3.61 Å, and the Eu-N_{pyrrole} distances are

1.31 and 1.80 Å for the external and internal DAPs, respectively. These distances are slightly shorter than those observed in the case of $Ce_2(OEP)_3$.⁷ The external and internal DAPs rotate by ca. 62° with respect to the Eu \rightarrow N_{meso} vectors (i.e., dihedral angle N_2 -Eu₁-Eu₂-N₈), which means that the pyrroles rotate by ca. 28°. The macrocyclic rotations are therefore significantly smaller than the ca. 40° rotations observed by Buchler et al. in the case of $Ce_2(OEP)_3$.⁷

In summary, we have prepared the first examples of lanthanide triple-decker sandwich complexes comprised of D_{2h} symmetry monomer units, $M_2(DAP)_3$ (M = Ce, Eu). The structure of $M_2(DAP)_3$ has been verified by X-ray crystallography, and the electrochemical and spectroscopic properties of both complexes have been examined in detail.

Acknowledgment. This research was partially supported by the Ministry of Education, Culture, Sports, Science, and Technology, Japan, a Grant-in-Aid for the COE project, Giant Molecules and Complex Systems, 2004.

Supporting Information Available: Crystallographic data in CIF format. 1H NMR spectrum. This material is available free of charge via the Internet at http://pubs.acs.org.

IC048744R

⁽¹⁶⁾ Crystal data for **2**: $C_{90}H_{104}Eu_2N_{18}O$, $M_w = 1757.83$, triclinic, space group $P\overline{1}$ with $q = 12.795(4)$, \overline{A} , $b = 13.124(4)$, \overline{A} , $c = 14.338(4)$, \overline{A} group *P*1 with $a = 12.795(4)$ Å, $b = 13.124(4)$ Å, $c = 14.338(4)$ Å, $\alpha = 89.559(4)$ ^o. $\beta = 77.806(4)$ ^o. $\nu = 68.619(4)$ ^o. $V = 2185.0(11)$ $\alpha = 89.559(4)^\circ$, $\beta = 77.806(4)^\circ$, $\gamma = 68.619(4)^\circ$, $V = 2185.0(11)$ Å³, $D_c = 1.336$ g cm⁻³, $Z = 1$. The structure was solved based on heavy-atom Patterson methods and refined by a full-matrix leastsquares procedure using 7539 data to a conventional R_1 (gt) value of 0.0535 (wR₂ = 0.1412). All computations were carried out using the SHELXS-97 software.